Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Infect Microbiol ; 13: 1338477, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38304461

RESUMO

Introduction: Chronic lung infection due to bacterial biofilms is one of the leading causes of mortality in cystic fibrosis (CF) patients. Among many species colonizing the lung airways, Pseudomonas aeruginosa and Staphylococcus aureus are two virulent pathogens involved in mechanically robust biofilms that are difficult to eradicate using airway clearance techniques like lung lavage. To remove such biological materials, glycoside hydrolase-based compounds are commonly employed for targeting and breaking down the biofilm matrix, and subsequently increasing cell susceptibility to antibiotics. Materials and methods: In this study, we evaluate the effects of N-acetyl cysteine (NAC) and Cysteamine (CYST) in disrupting interfacial bacterial films, targeting different components of the extracellular polymeric substances (EPS). We characterize the mechanics and structural integrity of the interfacial bacterial films using pendant drop elastometry and scanning electron microscopy. Results and discussion: Our results show that the film architectures are compromised by treatment with disrupting agents for 6 h, which reduces film elasticity significantly. These effects are profound in the wild type and mucoid P. aeruginosa, compared to S. aureus. We further assess the effects of competition and cooperation between S. aureus and P. aeruginosa on the mechanics of composite interfacial films. Films of S. aureus and wild-type P. aeruginosa cocultures lose mechanical strength while those of S. aureus and mucoid P. aeruginosa exhibit improved storage modulus. Treatment with NAC and CYST reduces the elastic property of both composite films, owing to the drugs' ability to disintegrate their EPS matrix. Overall, our results provide new insights into methods for assessing the efficacy of mucolytic agents against interfacial biofilms relevant to cystic fibrosis infection.


Assuntos
Fibrose Cística , Cistos , Infecções por Pseudomonas , Infecções Estafilocócicas , Humanos , Acetilcisteína/farmacologia , Acetilcisteína/metabolismo , Fibrose Cística/complicações , Fibrose Cística/microbiologia , Staphylococcus aureus , Pseudomonas aeruginosa , Cisteamina/farmacologia , Cisteamina/metabolismo , Infecções Estafilocócicas/microbiologia , Antibacterianos/farmacologia , Biofilmes , Pulmão , Infecções por Pseudomonas/microbiologia
2.
Biotechnol Adv ; 55: 107903, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34990774

RESUMO

The human microbiome comprises thousands of microbial species that live in and on the body and play critical roles in human health and disease. Recent findings on the interplay among members of the oral microbiome, defined by a personalized set of microorganisms, have elucidated the role of bacteria and yeasts in oral health and diseases including dental caries, halitosis, and periodontal infections. However, the majority of these studies rely on traditional culturing methods which are limited in their ability of replicating the oral microenvironment, and therefore fail to evaluate key microbial interactions in microbiome dynamics. Novel culturing methods have emerged to address this shortcoming. Here, we reviewed the potential of droplet-based microfluidics as an alternative approach for culturing microorganisms and assessing the oral microbiome dynamics. We discussed the state of the art and recent progress in the field of oral microbiology. Although at its infancy, droplet-based microtechnology presents an interesting potential for elucidating oral microbial dynamics and pathophysiology. We highlight how new findings provided by current microfluidic-based methodologies could advance the investigation of the oral microbiome. We anticipate that our work involving the droplet-based microfluidic technique with a semipermeable membrane will lay the foundations for future microbial dynamics studies and further expand the knowledge of the oral microbiome and its implication in oral health.


Assuntos
Cárie Dentária , Microbiota , Bactérias , Humanos , Interações Microbianas , Boca/microbiologia
3.
ACS Appl Mater Interfaces ; 12(45): 50581-50591, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33119264

RESUMO

Here, a novel poly(dimethylsiloxane) (PDMS)-based microbial culture system was investigated. Bacteria were encapsulated in functional and semipermeable membranes, mimicking the cell microenvironment and facilitating mass transport for interrogating microbial dynamics, thereby overcoming one of the major challenges associated with commercially available PDMS such as Sylgard 184. The hydrophobic nature and lack of control in the polymer network in Sylgard 184 significantly impede the the tunability of the transport and mechanical properties of the material as well as its usage as an isolation chamber for culturing and delivering microbes. Therefore, a novel PDMS composition was developed and functionalized with dimethylallylamine (DMAA) to alter its hydrophobicity and modify the polymer network. Characterization techniques including NMR spectroscopy, contact angle measurements, and sol-gel process were utilized to evaluate the physical and chemical properties of the newly fabricated membranes. Furthermore, the DMAA-containing polymer mixture was used as a proof of concept to generate hydrodynamically stable microcapsules and cultivate Escherichia coli cells in the functionalized capsules. The membrane exhibited a selective permeability to tetracycline, which diffused into the capsules to inhibit the growth of the encapsulated microbes. The functionality achieved here with the addition of DMAA, coupled with the high-throughput encapsulation technique, could prove to be an effective testing and diagnostic tool to evaluate microbial resistance, growth dynamics, and interspecies interaction and lays the foundation for in vivo models.


Assuntos
Alilamina/química , Técnicas de Cocultura , Dimetilpolisiloxanos/química , Escherichia coli/citologia , Dimetilpolisiloxanos/síntese química , Dispositivos Lab-On-A-Chip , Estrutura Molecular , Imagem Óptica , Tamanho da Partícula , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...